Kiel Life Science

New approach to antibiotic therapy is a dead end for pathogens

Jun 01, 2017

Kiel-based team of researchers uses evolutionary principles to explore sustainable antibiotic treatment strategies

The World Health Organization WHO is currently warning of an antibiotics crisis. The fear is that we are moving into a post-antibiotic era, during which simple bacterial infections would no longer be treatable. According to WHO forecasts, antibiotic-resistant pathogens could become the most frequent cause of unnatural deaths within just a few years. This dramatic threat to public health is due to the rapid evolution of resistance to antibiotics, which continues to reduce the spectrum of effective antibacterial drugs. We urgently need new treatments. In addition to developing new antibiotic drugs, a key strategy is to boost the effectiveness of existing antibiotics by new therapeutic approaches.

The Evolutionary Ecology and Genetics research group at Kiel University uses knowledge gained from evolutionary medicine to develop more efficient treatment approaches. As part of the newly-founded Kiel Evolution Center (KEC) at Kiel University, researchers under the direction of Professor Hinrich Schulenburg are investigating how alternative antibiotic treatments affect the evolutionary adaptation of pathogens. In the joint study with international colleagues now published in the scientific journal Molecular Biology and Evolution, they were able to show that in the case of the pathogen Pseudomonas aeruginosa, the evolution of resistance to certain antibiotics leads to an increased susceptibility to other drugs. This concept of so-called "collateral sensitivity" opens up new perspectives in the fight against multi-resistant pathogens.

Together with colleagues, Camilo Barbosa, a doctoral student in the Schulenburg lab, examined which antibiotics can lead to such drug sensitivities after resistance evolution. He based his work on evolution experiments with Pseudomonas aeruginosa in the laboratory. This bacterium is often multi-resistant and particularly dangerous for immunocompromised patients. In the experiment, the pathogen was exposed to ever-higher doses of eight different antibiotics, in 12-hour intervals. As a consequence, the bacterium evolved resistance to each of the drugs. In the next step, the researchers tested how the resistant pathogens responded to other antibiotics which they had not yet come into contact with. In this way, they were able to determine which resistances simultaneously resulted in a sensitivity to another drug.

The combination of antibiotics with different mechanisms of action was particularly effective - especially if aminoglycosides and penicillins were included. The study of the genetic basis of the evolved resistances showed that three specific genes of the bacterium can make them both resistant and vulnerable at the same time. "The combined or alternating application of antibiotics with reciprocal sensitivities could help to drive pathogens into an evolutionary dead end: as soon as they become resistant to one drug, they are sensitive to the other, and vice versa," said Schulenburg, to emphasize the importance of the work. Even though the results are based on laboratory experiments, there is thus hope: a targeted combination of the currently-effective antibiotics could at least give us a break in the fight against multi-resistant pathogens, continued Schulenburg.

Original publication:
Camilo Barbosa, Vincent Trebosc, Christian Kemmer, Philip Rosenstiel, Robert Beardmore, Hinrich Schulenburg and Gunther Jansen (2017): Alternative Evolutionary Paths to Bacterial Antibiotic Resistance Cause Distinct Collateral Effects. Molecular Biology and Evolution
doi.org/10.1093/molbev/msx158

Photos/material is available for download:

www.uni-kiel.de/download/pm/2017/2017-171-1.jpg
Caption: The pathogen Pseudomonas aeruginosa during the evolution experiment in the laboratory.
Image: Camilo Barbosa/Dr. Philipp Dirksen

www.uni-kiel.de/download/pm/2017/2017-171-2.jpg
Caption: Doctoral student Camilo Barbosa examined the effect of "collateral sensitivity", which can make antibiotic-resistant bacteria treatable.
Photo: Christian Urban, Kiel University

www.uni-kiel.de/download/pm/2017/2017-171-3.jpg
Caption: The research team analysed a total of 180 bacterial populations of the pathogen Pseudomonas aeruginosa.
Photo: Christian Urban, Kiel University

www.uni-kiel.de/download/pm/2017/2017-171-4.jpg
Caption: The bacteria became resistant to certain antibiotics, but at the same time sensitive to other substances.
Photo: Christian Urban, Kiel University

Contact:
Prof. Hinrich Schulenburg
Spokesperson “Kiel Evolution Center” (KEC), Kiel University
Tel.: +49 (0)431-880-4141
E-mail: hschulenburg@zoologie.uni-kiel.de

More information:
Research centre “Kiel Evolution Center”, Kiel University:
www.kec.uni-kiel.de

Evolutionary Ecology and Genetics research group, Zoological Institute, Kiel University:
www.uni-kiel.de/zoologie/evoecogen

Kiel University
Press, Communication and Marketing, Dr. Boris Pawlowski
Address: D-24098 Kiel, phone: +49 (0431) 880-2104, fax: +49 (0431) 880-1355
E-Mail: ► presse@uv.uni-kiel.de, Internet: ► www.uni-kiel.de Twitter: ► www.twitter.com/kieluni, Facebook: ► www.facebook.com/kieluni, Instagram: ► www.instagram.com/kieluni Text / Redaktion: ► Christian Urban

 

Switching mutations on and off again

Apr 12, 2016

Kiel research team facilitates functional genomics with new procedure

 

Mould is primarily associated with various health risks. However, it also plays a lesser-known role, but one which is particularly important in biotechnology. The mould (ascomycete) Aspergillus niger, for example, has been used for for around 100 years to industrially produce citric acid, which is used as a preservative additive in many foodstuffs. In order to research the genetic mechanisms which could shed light on the potential application spectrum of mould and its metabolic products, a research team from Kiel University has developed a new procedure in collaboration with colleagues from Leiden University in the Netherlands.  Read more...

Why the Japanese live longer

Nov 13, 2015

Kiel-based research team shows positive influence on life span of bioactive plant compounds in green tea and soy

A research team at the Institute of Human Nutrition and Food Science at Kiel University has discovered promising links between life expectancy and two phytochemicals - the so-called catechins and isoflavones. The underlying research by the Kiel-based scientists recently appeared in the two journals Oncotarget and The FASEB Journal. Read more...

Marine fungi contain promising anti-cancer compounds

Oct 28, 2015

A Kiel-based research team has identified fungi genes that can develop anti-cancer compounds

To date, the ocean is one of our planet's least researched habitats. Researchers suspect that the seas and oceans hold an enormous knowledge potential and are therefore searching for new substances to treat diseases here. In the EU "Marine Fungi" project, international scientists have now systematically looked for such substances specifically in fungi from the sea, with help from Kiel University and the GEOMAR Helmholtz Centre for Ocean Research Kiel. Read more...

New strategy for fighting antibiotic-resistant pathogens

Oct 16, 2015

Daily switching of antibiotics inhibits the evolution of resistance

Rapid evolution of resistance to antibiotics represents an increasingly dramatic risk for public health. In fewer than 20 years from now, antibiotic-resistant pathogens could become one of the most frequent causes of unnatural deaths. Medicine is therefore facing the particular challenge of continuing to ensure the successful treatment of bacterial infections - despite an ever-shrinking spectrum of effective antibiotics. Recent research by a group of scientists at Kiel University has now shown that there are possible ways to prolong the effectiveness of the antibiotics that are currently available. Read more...

Nematode worms hitch a ride on slugs

Jul 13, 2015

Kiel scientists expand the understanding of Caenorhabditis elegans’ natural ecology


Slugs and other invertebrates provide essential public transport for small worms including Caenorhabditis elegans in the search for food, as researchers from Kiel University have now found out. These worms are around a millimeter long and commonly found in short-lived environments, such as decomposing fruit or other rotting plant material. Read more...

Live from the Evolution Lab

Jun 05, 2015

Study on coevolution between host and pathogens sheds new light on evolutionary dynamics.

 

Every year, new cold and flu pathogens occur and problematic pathogens such as Ebola cause global alarm at regular intervals. The key to a better understanding of disease epidemics lies in the adaptability and thus in the evolution of the pathogens that cause disease. With the aid of innovative experiments in the lab, researchers in the research group Evolutionary Ecology and Genetics at the Christian Albrecht University of Kiel (CAU) have now been able to gain important insights into the evolution of pathogens. Read more...

Hidden safety switch: New findings on death receptors in cancer cells

Jun 10, 2015

Achieving a better molecular understanding of the role played in the occurrence of cancer of so-called death receptors which make the progression of pancreatic cancer in particular especially aggressive and almost always fatal – this is the goal of scientists at the Institute for Experimental Tumor Research at the Christian Albrecht University of Kiel (CAU). Read more...

Current Research

News

Calendar

« October 2017 »
Mo Tu We Th Fr Sa Su
25 26 27 28 29 30 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
Events